Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754421

RESUMO

Growing environmental concerns drive efforts to reduce packaging waste by adopting biodegradable polymers, coatings, and films. However, biodegradable materials used in packaging face challenges related to barrier properties, mechanical strength, and processing compatibility. A composite gel was developed using biodegradable compounds (prolamin, d-mannose, citric acid), as a coating to increase the oxygen barrier of food packaging materials. To improve gel stability and mechanical properties, the gels were physically cross-linked with particles synthesized from tetraethyl orthosilicate and tetramethyl orthosilicate precursors. Additionally, biocompatibility assessments were performed on human keratinocytes and fibroblasts, demonstrating the safety of the gels for consumer contact. The gel properties were characterized, including molecular structure, morphology, and topography. Biocompatibility of the gels was assessed using bioluminescent ATP assay to detect cell viability, lactate dehydrogenase assay to determine cell cytotoxicity, and a leukocyte stimulation test to detect inflammatory potential. A composite gel with strong oxygen barrier properties in low-humidity environments was prepared. Increasing the silane precursor to 50 wt% during gel preparation slowed degradation in water. The addition of citric acid decreased gel solubility. However, higher precursor amounts increased surface roughness, making the gel more brittle yet mechanically resistant. The increase of precursor in the gel also increased gel viscosity. Importantly, the gels showed no cytotoxicity on human keratinocytes or fibroblasts and had no inflammatory effects on leukocytes. This composite gel holds promise for oxygen barrier food packaging and is safe for consumer contact. Further research should focus on optimizing the stability of the oxygen barrier in humid environments and investigate the potential sensitizing effects of biodegradable materials on consumers.

2.
Antibiotics (Basel) ; 11(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140038

RESUMO

The interest of the food packaging industry in biodegradable, recyclable, and functional materials has steadily increased in recent years. The use of hydrogels in the food sector holds great potential for use in packaging systems or as carriers for bioactive substances. The synthesis of an oxygen barrier coating of prolaminic silica material and antimicrobial functionalization with fumaric acid for packaging materials described here is an elegant way to meet these requirements. The developed material achieved a significant antimicrobial activity against Escherichia coli and Staphylococcus aureus, two common clinical pathogens. Another pre-requisite of such materials is a high biocompatibility, which can be assessed using human cell models, to help ensure consumer safety. The biocompatibility was determined by luminescence adenosine triphosphate and photometric lactate dehydrogenase assays. No cytotoxic effects on human keratinocytes in vitro were found for the test materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...